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Zusammenfassung

Eines der Hauptziele des Applied Research Branch in der Numerical Aerodynamic Simulation (NAS)
Systems Division am NASA Ames Research Center ist die beschleunigte Einfiihrung von paralle-
len Hochleistungsrechnern in ein produktionsorientiertes Rechenzentrum. In dieser Arbeit werden
die Zielrichtungen des NAS Projekts in Bezug auf Parallelrechner dargestellt. Weiterhin werden
die Erfahrungen mit experimentellen Parallelrechnern im NAS Applied Research Branch zusam-
mengefasst. 1m Einzelnen wird iiber Ergebnisse mit Anwendungen in der Stromungsmechanik auf
der Connection Machine CM-2 und dem Intel iPSC/860 berichtet. Ergebnisse von Berechnungen
mit unstrukturierten Gittern und mit Teilchensimulationen werden dargestellt. Angesichts der Er-

fahrungen bei NASA wird die zunkiinftige Entwicklung von Parallelrechnern fiir die Anwendungen
in der Stromungsl1lechanik diskutiert.

1 Introduction

One of the key tasks of the Applied Research Branch in the Numerical Aerodynamic Simulation

(NAS) Systems Division at NASA Ames Research Center is the accelerated introduction of highly
parallel and related key hardware and software technologies into a full operational environment

(see [30]). From 1988 - 1991 a testbed facility has been established for the development and
demonstration of highly parallel computer technologies. Currently a 32K processor Connection
Machine CM-2 and an 128 node Intel iPSC/860 are operated at the NAS Systems Division. This
testbed facility is envisioned to consist of successive generations of increasingly powerful highly
parallel systems that are scalable to high performance capabilities beyond that of conventional
super computers. In the last two years a number of large scale computational fluid dynamics
applications have been implemented on the two testbed machines, and the potential of the parallel
machines for production use has been evaluated. Beyond that, a systematic performance evaluation
effort has been initiated (see [6, 1, 2]), and basic algorithm research has been continued.
In this report we will first give a brief description of the capabilities of the parallel machines at
NASA Ames. Then we will discuss some of the research carried out in the implementation of

computational fluid dynamics (CFD) applications on these parallel machines. We focus here on
those applications where we have more detailed knowledge because of our own involvement: 3D
Navier-Stokes multi-block structured grid codes, an explicit 2D Euler solver for unstructured grids,

and a simulation based on particle methods. In the last section we offer some preliminary conclusions
on the performance of current parallel machines for CFD applications, as well as the potential of
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the different architectures for production use in the future. Another summary of the experience
with parallel machines at NASA Ames is given by D. Bailey in [4]. More details about the NASA
Computational Aerosciences Program with more emphasis on the applications are given in [17,36].
This is an abbreviated version of [36].

2 Parallel Machines at NASA Ames

2.1 Connection Machine

The Thinking Machines Connection Machine Model CM-2 is a massively parallel SIMD computer
consisting of many thousands of bit serial data processors under the direction of a front end com-
puter. The system at NASA Ames consists of 32768 bit serial processors each with 1 Mbit of
memory and operating at 7 MHz. The processors and memory are packaged as 16 in a chip. Each
chip also contains the routing circuitry which allows any processor to send and receive messages
from any other processor in the system. In addition, there are 1024 64-bit Weitek floating point
processors which are fed from the bit serial processors through a special purpose "Sprint" chip.
There is one Sprint chip connecting every two CM chips to a Weitek. Each Weitek processor can
execute an add and a multiply each clock cycle thus performing at 14 MFLOPS and yielding a peak
aggregate performance of 14 GFLOPS for the system.
The Connection Machine can be viewed two ways, either as an eleven dimensional hypercube con-
necting the 2048 CM chips or as a ten dimensional hypercube connecting the 1024 processing
elements. The first view is the "fieldwise" model of the machine which has existed since its intro-
duction. This view admits to the existence of at least 32768 physical processors (when using the
whole machine), each storing data in fields within its local memory. The second is the more recent
"slicewise" model of the machine, which admits to only 1024 processing elements (when using the
whole machine), each storing data in slices of 32 bits distributed across the 32 physical processors in
the processing element. Both models allow for "virtual processing" , where the resources of a single
processor or processing element may be divided to allow a greater number of virtual processors.
Regardless of the machine model, the architecture allows interprocessor communication to proceed
in three manners. For very general communication with no regular pattern, the router determines
the destination of messages at run time and directs the messages accordingly. This is referred to
as general router communication. For communication with an irregular but static pattern, the
message paths may be pre-compiled and the router will direct messages according to the pre-
compiled paths. This is referred to as compiled communication and can be 5 times faster than
general router communication. Finally, for communication which is perfectly regular and involves
only shifts along grid axes, the system software optimizes the data layout by ensuring strictly
nearest neighbor communication and uses its own pre-compiled paths. This is referred to as NEWS
(for "NorthEastWestSouth") communication. Despite the name, NEWS communication is not
restricted to 2-dimensional grids, and up to 31-dimensional NEWS grids may be specified. NEWS
communication is the fastest. An analysis of the communication speed of the CM can be found in
[24].
The I/O subsystems connect to the data processors through an I/O controller. An I/O controller
connects to 8192 processors through 256 I/O lines. There is one line for each chip but the controller
can only connect to 256 lines simultaneously and must treat its 8K processors as two banks of 4K
each. Each I/O controller allows transfer rates of up to 40 MB per second. In addition to an I/O
controller there can be a frame buffer for color graphics output. Because it is connected directly
to the backplane rather than through the I/O bus, the frame buffer can receive data from the CM
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processors at 256 MB per second. The system at NASA Ames has two frame buffers connected to
two high resolution color monitors and four I/O controllers connected to a 20 GB DataVault mass
storage system.
The Connection Machine's processors are used only to store and process data. The program in-
structions are stored on a front-end computer which also carries out any scalar computations.
Instructions are sequenced from the front end to the CM through one or more sequencers. Each
sequencer broadcasts instructions to 8192 processors and can execute either independent of other
sequencers or combined in two or four. There are two front end computers at NASA Ames, a Vax
8350 and a Sun 4/490, which currently support about 100 users. There are two sequencer interfaces
on each computer which allow up to four concurrent users. In addition, the system software sup-
ports the Network Queue System (NQS) and time sharing through the CM Time Sharing System
(CMTSS).
The Connection Machine system was first installed at NASA Ames in June of 1988. Since then
the system has undergone a number of upgrades, the most recent being completed in February of
1991. An assessment of the system is given in [34]. Perhaps its greatest strength, from a user
standpoint, is the robust system software. This is of critical importance to NASA as it moves its
parallel machines into production mode.

2.2 Intel iPSC/860

The Intel iPSC/860 (also known as Touchstone Gamma System) is based on the new 64 bit i860
microprocessor by Intel [18]. The i860 has over 1 million transistors and runs at 40 MHz. The
theoretical peak speed is 80 MFLOPS in 32 bit floating point and 60 MFLOPS for 64 bit floating
point operations. The i860 features 32 integer address registers, with 32 bits each, and 16 floating
point registers with 64 bits each (or 32 floating point registers with 32 bits each). It also features
an 8 kilobyte on-chip data cache and a 4 kilobyte instruction cache. There is a 128 bit data path
between cache and registers. There is a 64 bit data path between main memory and registers.
The i860 has a number of advanced features to facilitate high execution rates. First of all, a number
of important operations, including floating point add, multiply and fetch from main memory, are
pipelined operations. This means that they are segmented into three stages, and in most cases a
new operation can be initiated every 25 nanosecond clock period. Another advanced feature is the
fact that multiple instructions can be executed in a single clock period. For example, a memory
fetch, a floating add and a floating multiply can all be initiated in a single clock period.
A single node of the iPSC/860 system consists of the i860, 8 megabytes (MB) of dynamic random
access memory, and hardware for communication to other nodes. For every 16 nodes, there is also a
unit service module to facilitate access to the nodes for diagnostic purposes. The iPSC/860 system
at NASA Ames consists of 128 computational nodes. The theoretical peak performance of this
system is thus approximately 7.5 GFLOPS on 64 bit data.
The 128 nodes are arranged in a seven dimensional hypercube using the direct connect routing
module and the hypercube interconnect technology of the iPSC/2. The point to point aggregate
bandwidth of the interconnect system, which is 2.8 MB/sec per channel, is the same as on the
iPSC /2. However the latency for the message passing is reduced from about 350 microseconds to
about 90 microseconds. This reduction is mainly obtained through the increased speed of the i860
on the iPSC/860 machine, when compared to the Intel 386/387 on the iPSC/2. The improved
latency is thus mainly a product of faster execution of the message passing software on the i860.
Attached to the 128 computational nodes of the NASA Ames system are ten I/O nodes, each of
which can store approximately 700 MB. The total capacity of the I/O system is thus about 7
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GB. These I/O nodes operate concurrently for high throughput rates. The complete system is
controlled by a system resource module (SRM), which is based on an Intel 80386 processor. This
system handles compilation and linking of source programs, as well as loading the executable code
into the hypercube nodes and initiating execution. At present the SRM is a serious bottleneck in
the system, due to its slowness in compiling and linking user codes. For example, the compilation of
a moderate-sized application program often requires 30 minutes or more, even with no optimization

options and no other users on the system.
During 1990 the iPSC/860 has been thoroughly investigated at NASA Ames. A first set of bench-
mark numbers, and some CFD applications performance numbers have been published in [3]. A
more recent summary is given by Barszcz in [7]. As documented in [7]from an overall systems aspect
the main bottleneck has been the SRM, which is not able to handle the demands of a moderately

large user community (about 50 to 100 users) in a production environment. Another important
result of the investigations was the outcome of a study by Lee [20]. Lee's analysis of the i860 floating
point performance indicates that on typical CFD kernels the best performance to be expected is in
the 10 MFLOPS range. Finally we mention a two performance studies of the I/O system by Lou

[25] and Ryan [33],which measure the I/O performance of the concurrent file system (CFS), the
parallel I/O device delivered by Intel.

3 Structured Grid Applications

Structured grid flow solvers, in particular multi-block structured grid flow solvers, are the main class
of production CFD tools at NASA Ames. A number of different efforts were directed toward the
implementation of such capabilities on parallel machines. One of the first CFD results on the CM-2
was the work by Levit and Jespersen [21, 22], which was recently extended to three dimensions

[23]. Their implementation is based on the successful ARC2D and ARC3D codes developed by
Pulliam [32]. Work by Barszcz and Chawla [8] is in progress to implement F3D, a successor code to
ARC3D, on the CM-2. On the iPSC/860 Weeratunga has implemented ARC2D (for early results
see [3]), and work is in progress to implement F3D. Weeratunga also has developed three simulated
CFD applications based on structured grid flow solvers for the NAS Parallel Benchmarks, which
are described in Chapter 3 of [6].
The results obtained by Weeratunga, Barszcz, Fatoohi, and Venkatakrishnan on the simulated
CFD applications benchmark are indicative for the current performance level of parallel machines
on implicit CFD algorithms. Performance results for "kernel" benchmarks do not fully reflect
the computational requirements of a realistic, state-of-the-art CFD application. This is because
a data structure that is optimal for one particular part of the computation on a given system
might be very inefficient for another part of the computation. As a result, the three "simulated
CFD application" benchmarks were devised. These three benchmarks are intended to accurately
represent the principal computational and data movement requirements of modern implicit CFD
applications. They model the main building blocks of CFD codes designed at NASA Ames for the
solution of 3D Euler/Navier-Stokes equations using finite-volume/finite-difference discretization on
structured grids.
There is one important feature which characterizes these simulated applications from a computa-
tional point of view. All three involve approximate factorization techniques, which in turn require
the solution of three sets of multiple, independent, sparse, but structured systems of linear equations
at each time step. Each of three sets of solves keeps one coordinate direction fixed, and solves the

multiple sets of linear systems in the direction of the grid planes orthogonal to the fixed direction.
Thus the three dimensional computational grid must be accessed by planes in three different direc-

4



Table 1. Results for the LV Simulated CFD Application.

tions. This has a very important implication for distributed memory machines: no single allocation
scheme for the three dimensional grid is optimal. In order to carry out the solver phase efficiently
in the three different grid directions the grids will have to be redistributed among the processors.
The key to an efficient implementation of the simulated application benchmark is then to devise
optimal distribution and communication schemes for the transition between the three solve phases
at each time step! .
The first of the simulated applications is the LV benchmark. In this benchmark, a regular-sparse,
block (5 x 5) lower and upper triangular system is solved. This problem represents the computations
associated with the implicit operator of a newer class of implicit CFD algorithms, typified at NASA
Ames by the code INS3D-LV [38]. This problem exhibits a somewhat limited amount of parallelism
compared to the next two.
The second simulated CFD application is called the scalar penta-diagonal (SP) benchmark. In
this benchmark, multiple independent systems of non-diagonally dominant, scalar, penta-diagonal
equations representative of computations associated with the implicit operators of CFD codes such
as ARC3D [32] at NASA Ames Research Center. SP and BT are similar in many respects, but
there is a fundamental difference with respect to the communication to computation ratio.
The third simulated CFD application is called the block tri-diagonal (BT) benchmark. In this
benchmark, multiple independent systems of non-diagonally dominant, block tri-diagonal equations
with a (5 x 5) block size are solved (for a related discussion of the parallel implemenation of ARC3D
see also [29]).
Performance figures for the three simulated CFD applications are shown in Tables 1,2, and 3.
Timings are cited in seconds per iteration. In all three tables results are reported for grids of
size 64 x 64 x 64. A complete solution of the LV benchmark requires 250 iterations. For the SP
benchmark, 400 iterations are required. For the BT benchmark, 200 iterations are required. The
MFLOPS in these tables for the parallel machines are based on an operation count established for
the sequential version of the program.

1It should be pointed out that this discussion of the simulated applications does not apply to all production CFD
codes at NASA Ames. For example the widely used F3D code, as well as the UPS code, are for example based on a
two factor scheme.
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No. Time/Iter. MFLOPS
System Proc. (sees.) (Y-MP)
Y-MP 1 1.73 246

8 0.25 1705

iPSC/860 64 3.05 139
128 1.90 224

CM-2 8K 5.23 82
16K 3.40 125
32K 2.29 186



Table 2. Results for the SP Simulated CFD Application.

Table 3. Results for the BT Simulated CFD Application.

4 Unstructured Grid Applications

We discuss here work on an unstructured upwind finite-volume explicit flow solver for the Euler
equations in two dimensions that is well suited for massively parallel implementation. The mathe-
matical formulation of this flow solver was proposed and implemented on the Cray-2 by Barth and
Jespersen[9]. This solver has been implemented on the CM-2 by Hammond and Barth [15], and on
the Intel iPSC/860 by Venkatakrishnan, Simon, and Barth [37].
The unstructured grid code developed by Barth is a vertex-based finite-volume scheme. The control
volumes are non-overlapping polygons which surround the vertices of the mesh, called the "dual"
of the mesh. Associated with each edge of the original mesh is a dual edge. Fluxes are computed
along each edge of the dual in an upwind fashion using an approximate Riemann solver. Piecewise
linear reconstruction is employed which yields second order accuracy in smooth regions. A four
stage Runge-Kutta scheme is used to advance the solution in time. Fluxes, gradients and control
volumes are all constructed by looping over the edges of the original mesh. A complete description
of the algorithm can be found in [9, 15]. It is assumed that a triangularization of the computational
domain and the corresponding mesh has been computed.
In both implementations the same four element wing cross-section test case has been used. The test
case unstructured mesh includes 15606 vertices, 45878 edges, 30269 faces, and 949 boundary edges.
The flow was computed at a freest ream Mach number of .1 and 0 degrees angle of attack. The code
for this test case runs at 150 MFLOPS on the NAS Cray Y-MP at NASA Ames, and requires 0.39
seconds per time step. In the Cray implementation, vectorization is achieved by coloring the edges
of the mesh.
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No. Time/Iter. MFLOPS
System Proc. (sees.) (Y-MP)
Y-MP 1 1.18 250

8 0.16 1822

iPSC/860 64 2.42 122
CM-2 8K 9.75 30

16K 5.26 56
32K 2.70 109

No. Time/Iter. MFLOPS
System Proc. (sees.) (Y-MP)
Y-MP 1 3.96 224

8 0.57 1554

iPSC/860 64 4.54 199
CM-2 16K 16.64 54

32K 9.57 94



4.1 SIMD Implementation of Unstructured Solver

For the implementation on the CM-2 Hammond and Barth [15] used a novel partitioning of the
problem which minimizes the computation and communication costs on a massively parallel com-
puter. The following description follows [15] closely. In a mesh-vertex scheme, solution variables
are associated with each vertex of the mesh and flux computation is performed at edges of the
non-overlapping control volumes which surround each vertex. In conventional parallel implementa-
tions this operation is partitioned to be performed edge-wise, i.e., each edge of the control volume
is assigned to one processor (edge-based). The resulting flux calculation contributes to two control
volumes which share the particular edge.
In the partitioning used by Hammond and Barth, each vertex of the mesh is assigned to one
processor (vertex-based). Flux computations are identical to the edge-based scheme but computed
by processors associated with vertices. Each edge of the mesh joins a pair of vertices and is associated
with one edge of the control volume.

One can direct an edge (i,j) to determine which vertex in the pair computes the flux through the
shared edge of the control volume, (k',j'). When there is a directed edge from i to j, then the
processor holding vertex j sends its conserved values to the processor holding vertex i, and the flux
across the common control volume edge is computed by processor i and accumulated locally. The

flux through (k', j') computed by the processor holding vertex i is sent to the processor holding
vertex j to be accumulated negatively. Hammond and Barth show that their vertex-based scheme

requires 50% less communication and asymptotically identical amounts of computation as compared
with the traditional edge-based approach.
Another important feature of the work by Hammond and Barth is the use of fast communication.

A feature of the communication within the flow solver here is that the communication pattern,
although irregular, remains static throughout the duration of the computation. The SIMD im-
plementation takes advantage of this by using a mapping technique developed by Hammond and
Schreiber [16] and a "Communication Compiler" developed for the CM-2 by Dahl [13]. The for-
mer is a highly parallel graph mapping algorithm that assigns vertices of the grid to processors in
the computer such that the sum of the distances that messages travel is minimized. The latter is
a software facility for scheduling completely general communications on the Connection Machine.

The user specifies a list of source locations and destinations for messages and enables one to fully
utilize the large communication bandwidth of the machine.

Hammond and Barth have incorporated the mapping algorithm and the communication compiler
into the flow solver running on the CM-2 and have realized a factor of 30 reduction in communication

time compared to using naive or random assignments of vertices to processors and the router.

Originally, using 8K processors of the CM-2 and a virtual processor (VP) ratio of 2, Hammond
and Barth carried out 100 time steps of the flow solver in about 71.62 seconds. An improved
implementation by Hammond in [14] resulted in 43 seconds per 100 time steps, which is equivalent
to 136 MFLOPS. This does not include setup time.

4.2 MIMD Implementation of Unstructured Solver

Similar to the SIMD implementation one of the key issues is the partitioning of the unstructured
mesh. In order to partition the mesh Venkatakrishnanet al. [37]employ a new algorithm for the
graph partitioning problem, which has been discussed recently by Simon [35],and which is based
on the computation of eigenvectors of the Laplacian matrix of a graph associated with the mesh.

Details on the theoretical foundations of this strategy can be found in [31]. Detailed investigations
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and comparisons to other strategies (cf. [35]) have shown that the spectral partitioning produces
subdomains with the shortest boundary, and hence tends to minimize communication cost.
After the application of the partition algorithm of the previous section, the whole finite volume grid
with triangular cells is partitioned into P subgrids, each subgrid contains a number of triangular cells
which form a single connected region. Each subgrid is assigned to one processor. All connectivity
information is precomputed, using sparse matrix type data structures.
Neighboring subgrids communicate to each other only through their interior boundary vertices
which are shared by the processors containing the neighboring subgrids. In the serial version of the
scheme, field quantities (mass, momentum and energy) are initialized and updated at each vertex
of the triangular grid using the conservation law for the Euler equations applied to the dual cells.
Each processor performs the same calculations on each subgrid as it would do on the whole grid in
the case of a serial computation. The difference is that now each subgrid may contain both physical
boundary edges and interior boundary edges, which have resulted from grid partitioning. Since a
finite volume approach is adopted, the communication at the inter-processor boundaries consists of
summing the local contributions to integrals such as volumes, fluxes, gradients etc.
The performance of the Intel iPSCj860 on the test problem is given in Table 4. The MFLOPS\

given are based on operation counts using the Cray hardware performance monitor. The efficiency
is computed as

Efficiency(%) = MFLOPS with N procs-- , - - - - - . - - , * 100.

Table 4. Performance of Unstructured Grid Code on the Intel iPSCj860.

In summary the performance figures on the unstructured grid code are given in Table 5, where all
MFLOPS numbers are Cray Y-MP equivalent numbers.

Table 5. Performance Comparison of Unstructured Grid Code.

5 Particle Methods

Particle methods of simulation are of interest primarily for high altitude, low density flows.When
a gas becomessufficientlyrarefiedthe constitutive relationsof the Navier-Stokesequations (i.e. the
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Processors secsj step MFLOPS efficiency(%)
2 7.39 7.9 86
4 3.70 15.8 86
8 1.94 30.2 82

16 1.08 54.1 74
32 0.59 99.2 67
64 0.31 187.5 64

128 0.19 307.9 52

Machine Processors secsj step MFLOPS
Cray Y-MP 1 0.39 150.0

Intel iPSCj860 64 0.31 187.5
128 0.19 307.9

CM-2 8192 0.43 136



Stokes law for viscosity and the Fourier law for heat conduction) no longer apply and either higher
order relations must be employed (e.g. the Burnett equations [26]), or the continuum approach
must be abandoned and the molecular nature of the gas must be addressed explicitly. The latter
approach leads to direct particle simulation.
In direct particle simulation, a gas is described by a collection of simulated molecules thus completely
avoiding any need for differential equations explicitly describing the flow. By accurately modeling
the microscopic state of the gas, the macroscopic description is obtained through the appropriate
integration. The primary disadvantage of this approach is that the computational cost is relatively
large. Therefore, although the molecular description of a gas is accurate at all densities, a direct
particle simulation is competitive only for low densities where accurate continuum descriptions are
difficult to make.

For a small discrete time step, the molecular motion and collision terms of the Boltzmann equation
may be decoupled. This allows the simulated particle flow to be considered in terms of two consec-
utive but distinct events in one time step, specifically there is a collisionless motion of all particles
followed by a motionless collision of those pairs of particles which have been identified as colliding
partners. The collisionless motion of particles is strictly deterministic and reversible. However, the
collision of particles is treated on a probabilistic basis. The particles move through a grid of cells
which serves to define the geometry, to identify colliding partners, and to sample the macroscopic
quantities used to generate a solution.
The state of the system is updated on a per time step basis. A single time step is comprised of five
events:

1. Collisionless motion of particles.

2. Enforcement of boundary conditions.

3. Pairing of collision partners.

4. Collision of selected collision partners.

5. Sampling for macroscopic flow quantities.

Detailed description of these algorithms may be found in [27]and [10]

5.1 SIMD Implementation of Particle Simulation

Particle simulation is distinct from other CFD applications in that there are two levels of parallel
granularity in the method. There is a coarse level consisting of cells in the simulation (which are
approximately equivalent to grid points in a continuum approach) and there is a fine level consisting
of individual particles. At the time of the CM-2 implementation there existed only the fieldwise
model of the machine, and it was natural for Dagum [10]to decompose the problem at the finest level
of granularity. In this decomposition, the data for each particle is stored in an individual virtual
processor in the machine. A separate set of virtual processors (or VP set) stores the geometry and
yet another set of virtual processors stores the sampled macroscopic quantities.
This decomposition is conceptually pleasing however in practice the relative slowness of the Connec-
tion Machine router can prove to be a bottleneck in the application. Dagum [10]introduces several
novel algorithms to minimize the amount of communication and improve the overall performance
in such a decomposition. In particular, steps 2 and 3 of the particle simulation algorithm require a
somewhat less than straightforward approach.
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The enforcement of boundary conditions requires particles which are about to interact with a bound-
ary to get the appropriate boundary information from the VP set storing the geometry data. Since
the number of particles undergoing boundary interaction is relatively small, a master/slave algo-
rithm is used to minimize both communication and computation. In this algorithm, the master is
the VP set storing the particle data. The master creates a slave VP set large enough to accommo-
date all the particles which must undergo boundary interactions. Since the slave is much smaller
than the master, instructions on the slave VP set execute much faster. This more than makes up
for the time that the slave requires to get the geometry information and to both get and return the
particle information.
The pairing of collision partners requires sorting the particle data such that particles occupying
the same cell are represented by neighboring virtual processors in the one dimensional NEWS grid
storing this data. Dagum [12] describes different sorting algorithms suitable for this purpose. The
fastest of these makes use of the realization that the particle data moves through the CM processors
in a manner analogous to the motion of the particles in the simulation. The mechanism for disorder
is the motion of particles, and the extent of motion of particles, over a single time step, is small.
This can be used to tremendously reduce the amount of communication necessary to re-order the
particles.
These algorithms have been implemented in a two-dimensional particle simulation running on the
CM-2. At the time of implementation, the CM-2 at NASA Ames had only 64K bits of memory
per processor which was insufficient to warrant a three-dimensional implementation. Furthermore,
the slicewise model of the machine did not exist and the machine had the slower 32-bit Weitek's

which did not carry out any integer arithmetic. Nonetheless, with this smaller amount of memory
and fieldwise implementation, the code was capable of simulating over 2.0 X 106particles in a
grid with 6.0 x 104 at a rate of 2.°J.tsec/particle/time step using all 32K processors (see [10]). By
comparison, a fully vectorized equivalent simulation on a single processor of the Cray YMP runs
at 1.0J.tsec/particle/time step and 86 MFLOPS as measured by the Cray hardware performance
monitor. (Note that a significant fraction of a particle simulation involves integer arithmetic and the
MFLOP measure is not completely indicative of the amount of computation involved). Currently,
work is being carried out to extend the simulation to three dimensions using a parallel decomposition
which takes full advantage of the slicewise model of the machine.

5.2 MIMD Implementation of Particle Simulation

The MIMD implementation differs from the SIMD implementation not so much because of the
difference in programming models but because of the difference in granularity between the ma-
chine models. Whereas the CM-2 has 32768 processors, the iPSC/860 has only 128. Therefore on
the iPSC/860 it is natural to apply a spatial domain decomposition rather than the data object
decomposition used on the CM-2.
In McDonald's [28] implementation, the spatial domain of the simulation is divided into a number
of sub-domains or regions equal to the desired number of node processes. Communication between
processes occurs as a particle passes from one region to another and is carried out asynchronously,
thus allowing overlapping communication and computation. Particles crossing region "seams" are
treated simply as an additional type of boundary condition. Each simulated region of space is
surrounded by a shell of extra cells that, when entered by a particle, directs that particle to the
neighboring region. This allows the representation of simulated space (i.e. the geometry definition)
to be distributed along with the particles. The aim is to avoid maintaining a representation of all
simulated space which, if stored on a single processor, would quickly become a serious bottleneck
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for large simulations, and if replicated would simply be too wasteful of memory.
Within each region the sequential or vectorized particle simulation is applied. This decomposition
allows for great flexibility in the physical models that are implemented since node processes are
asynchronous and largely independent of each other. Recall that communication between processes
is required only when particles cross region seams. This is very fortuitous since the particle motion is
straightforward and fully agreed upon. The important area of research has to do with the modeling
of particles, and since this part of the problem does not directly affect communication, particle
models can evolve without requiring great algorithmic changes.
McDonald's implementation is fully three-dimensional. The performance of the code on a 3D heat
bath is given in Table 6.

Table 6. Performance of Particle Simulation on the Intel iPSC j860.

At the present time the domain decomposition is static, however work is being carried out to
allow dynamic domain decomposition thus permitting a good load balance to exist throughout
a calculation. The geometry and spatial decomposition of the heat bath simulation exaggerated
the area to volume ratio of the regions in order to more closely approximate the communication
expected in a real application with dynamic load balancing. The most promising feature of these
results is the linear speed up obtained, indicating that the performance of the code should continue
to increase with increasing numbers of processors.
For the particle methods the corresponding summary of performance figures for all three machines
can be found in Table 7. The figures in Table 7 should be interpreted very carefully. The simulations
run on the different machines were comparable, but not identical. The MFLOPS are Cray Y-MP
equivalent MFLOPS ratings based on the hardware performance monitor.

Table 7. Performance Comparison of Particle Simulation Code.

6 Conclusions

The results in Table 8 summarize most of the efforts discussed in this paper. They demonstrate
that on current generation parallel machines performance on actual CFD applications is obtained
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Processors J-Lsjprtjstep MFLOPS efficiency(%)
2 24.4 3.5 97
4 12.5 6.9 95
8 6.35 13.5 93

16 3.25 26.5 91
32 1.63 52.8 91
64 0.85 101 87

128 0.42 215 88

Machine Processors J-Lsecsjparticlej step MFLOPS

Cray 2 1 2.0 43
Cray Y-MP 1 1.0 86

Intel iPSCj860 128 0.4 215

CM-2 (32 bit) 32768 2.0 43



*) CM result for 8K processors

Table 8. Summary of Performance on Parallel Machines (fraction of single processor Cray Y-MP
performance) .

which is approximately equivalent to the performance of one to two processors of a Cray Y-MP.
All applications considered here are not immediately parallelized and both on SIMD and MIMD
machines considerable effort must be expended in order to obtain an efficient implementation. It
has been demonstrated by the results obtained at NASA Ames that this can be done, and that super
computer level performance can be obtained on current generation parallel machines. Furthermore
the particle simulation code on the CM-2 is a production code currently used to obtain production
results (see [11]). The iPSC/860 implementation should be in production use by the end of 1991.
Our results also demonstrate another feature which has been found across a number of applica-
tions at NASA Ames: massively parallel machines quite often obtain only a fraction of their peak
performance on realistic applications. In the applications considered here, there are at least two
requirements which form the primary impediment in obtaining the peak realizable performance
from these machines. One of these requirements is for unstructured, general communication with
low latency and high bandwidth, which arises both in the unstructured application and in particle
codes. The other requirement is for high bandwidth for a global exchange as it occurs in array
transposition. This is important for the structured grid problems, since three dimensional arrays
have to be accessed in the direction of the three different grid planes. Neither the CM-2 nor the
iPSC /860 deliver the communication bandwidth necessary for these CFD applications. Experi-
ence has shown that CFD applications require on the order of one memory reference per floating
point operation and a balanced system should have a memory bandwidth comparable to its floating
point performance. In these terms, current parallel systems deliver only a fraction of the required
bandwidth.

It spite of these promising results all the high expectations for parallel machines have not yet been
met. In particular we do not believe that there is or will be a 10 GFLOPS sustained performance
parallel machine available before 1993. Even on the new Intel Touchstone Delta machine the
applications described here will perform at best in the 1 - 2 GFLOPS 2 range. The question then

is (to quote Tom Lasinski [19]): "So why are we still bullish on parallel computers?". The answer,
also given in [19], is: "Parallel computers have a tremendous growth potentia1." Even if we assume
that current machine such as the CM-2 and the Intel iPSC/860 achieve only 1/50 of their peak
performance on parallel CFD applications, we can extrapolate to the near future and predict a great
increase in performance. In 1995 a machine based on commodity microprocessors with 160 MHz,
three results per clock period, and 2048 processors is entirely likely and feasible. Such a machine
would have approximately 1 TFLOPS peak performance. Even at 1/50 of this peak performance, we
would be able to perform CFD calculations at a level of 20 GFLOPS sustained. With improvements
in hardware, software, and algorithms we should be able to obtain even better performance.

2Researchers at NAS are aware that there are claims about multiple GFLOPS performance on these systems.
However, the discriminating reader is encouraged to study the recent note by D. Bailey on "Twelve Ways to Fool
the Masses When Giving Performance Results on Parallel Computers" [5].
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Application CM-2 iPSC/860
32K proc. 128 proc.

Structured grid (LU) 0.76 0.91

Unstructured grid* 0.91 2.05
Particle methods 0.50 2.50



As outlined in [36],these significant increases in compute power are essential to accomplishing the
computational Grand Challenges of the 1990's. Even detailed single discipline computations will
require GFLOP performance, with the multi-disciplinary simulations becoming just feasible on the
most advanced systems of the 1990's.
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